

DRILLING AT MARYMIA EXTENDS MINERALISED ZONES AT PHB

Initial results confirm extensions of all three major lode structures – drilling is ongoing

- Initial results from PHB-1 include high-grade intersections from extensions of Main Lode:
 - 4.0m @ 6.56 g/t Au including 1.0m @ 12.5 g/t Au from 87m in VHBRC0008
 - 3.0m @ 4.57 g/t Au including 1.0m @ 9.5 g/t Au from 88m in VHBRCD0007
- Thick, moderate grade intersections highlight deeper West Lode resource potential
- Results are from the initial 9 RC holes (including 3 pre-collars) of 18 RC and diamond drillholes at PHB-1 for 4,738m – part of a 20,000m drilling program at Marymia
- Results pending for 9 RC holes and 5 diamond drillholes at PHB-1, including lode intersections down dip/plunge from previous intersection 7m @ 103.6 g/t Au in VK2RC0007¹
- Drilling currently in progress at K1, testing lode system below the previously mined openpit – potential to link K2/PHB-1 and K1 across a contiguous 3km strike length

Vango Chairman, Bruce McInnes commenting on the initial results said that the potential of Marymia continues to grow with the gold mineralisation footprint.

"Although we have only received a small portion of the results from this major drilling programme, the high grades and continuity of the mineralisation thus far is very exciting, particularly in the context of building on our existing one million ounce resource as well as the project's economics.

"Following receipt of all results, from this initial drilling programme, we plan to accelerate the Stage 2 resource definition drilling in order to bring forward the planned high-grade resource update and support feasibility studies for a substantial gold production centre at Marymia," Mr McInnes said.

Images 1 & 2: RC rig drilling VHBRC0010 & Diamond rig drilling VHBRCD0006 at PHB-1, Marymia Gold Project

Vango Mining Limited (Vango, ASX:VAN) is pleased to announce initial results from its major drilling program, including high-grade intersections at PHB-1, on its 100% owned Marymia Gold Project, located 300km northeast of Meekatharra in the Mid-West region of Western Australia (Figure 1).

The current drilling program commenced in mid July 2020, testing interpreted extensions of the three key lode structures in the PHB Corridor, including Main Lode, Central Lode and West Lode (Figure 2). A total of 18 holes have been completed to date at PHB-1 prospect, including 13 RC holes and 5 (precollared) diamond holes for 4,738.1m of the approximately 20,000m Stage 1 program over the Marymia Gold Project².

Initial results have been received for 9 completed RC holes (including 3 pre-collars) and include high-grade intersections on **Main Lode** of:

- 4.0m @ 6.56 g/t Au including 1m @ 12.5 g/t Au from 87m in VHBRC0008, Main Lode
- 3.0m @ 4.57 g/t Au including 1m @ 9.50 g/t Au from 88m in VHBRCD0007, Main Lode
- 11m @ 1.75 g/t Au including 1m @ 8.57 g/t Au from 68m in VHBRC0014, Main Lode

These initial intersections have extended the projection of the upper shoot on Main lode to at least 200m northeast of the historical K2 open-pit (Figure 2), where previous intersections of **3m @ 19.7 g/t Au** from 126m in VK2RC0009³ and **15m @ 6.51 g/t Au including 5m @ 12.5 g/t Au** from 118m in VK2RC0010a³ were produced from the previous drilling program.

The initial results also include thick, moderate grade, intersections on West Lode of:

- 13m @ 1.10 g/t Au incl. 4m @ 1.99 g/t Au from 171m in VHBRC0010, and,
 12m @ 1.44 g/t Au including 1m @ 4.72 g/t Au from 193m in VHBRC0010, West Lode
- 2.0m @ 2.94 g/t Au including 1m @ 4.35 g/t Au from 230m in VHBRC0011, and,
 19m @ 1.10 g/t Au including 4m @ 2.18 g/t Au from 262m in VHBRC0011, West Lode
- 26m @ 1.06 g/t Au including 5m @ 2.15 g/t Au from 131m in VHBRC0012, and,
 2m @ 3.04 g/t Au including 1m @ 5.09 g/t Au from 153m in VHBRC0012, West Lode
- 13m @ 1.23 g/t Au including 4m @ 2.09 g/t Au from 176m in VHBRC0013, West Lode

The intersections on West Lode are from a broad zone of shearing and silicification associated with the margins of felsic porphyry intrusions in mafic and ultramafic rocks, that represent a thick mineralised zone with open-pit resource potential.

Results from the remaining 9 RC holes and 5 diamond drillholes at PHB-1 include intersections of Central Lode, down dip/plunge from previous intersection **7m @ 103.6 g/t Au** from 48m in VK2RC0007¹, and will be reported in the coming weeks as they come to hand.

RC drilling is now in progress testing the K1 lode system below the previously mined open-pit, located 1km to 1.5km northeast of PHB-1. Potential exists to link the K2/PHB-1 and K1 lode structures across a 3km strike length, which is poorly tested below 100m depth.

Diamond drilling will shortly commence testing targets in the Contessa Corridor on the Ned's Creek JV project (Figure 1) with Lodestar Minerals Ltd (Lodestar, ASX:LSR)⁴.

RC and diamond drilling are also planned for the Trident Corridor where a combination of immediate high-grade resource extension targets and deeper, large scale, 'Plutonic analogue' targets will be tested.

Significant intersections are summarised in Table 1. Drillhole locations and details are summarised in Table 2 and significant gold assays are shown in Appendix 1.

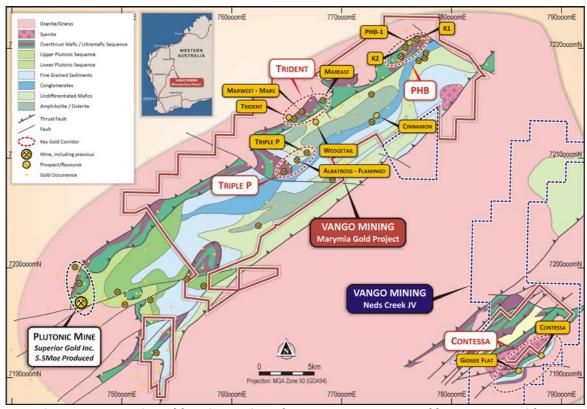


Figure 1: Marymia Gold Project, Mineral Resource prospects and key target corridors

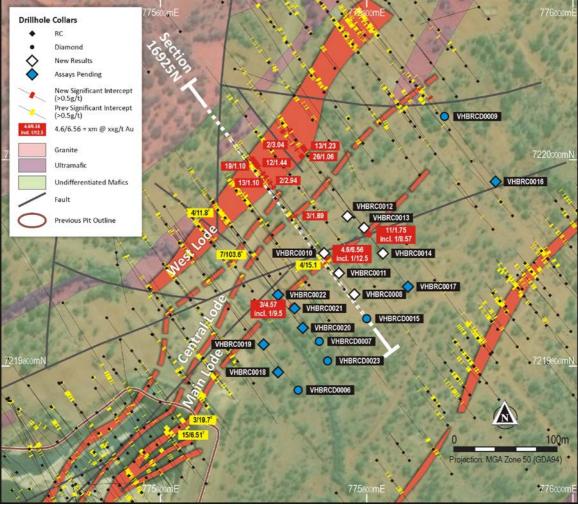


Figure 2: Plan of three lode targets at PHB-1, with drilling completed and intersections to date

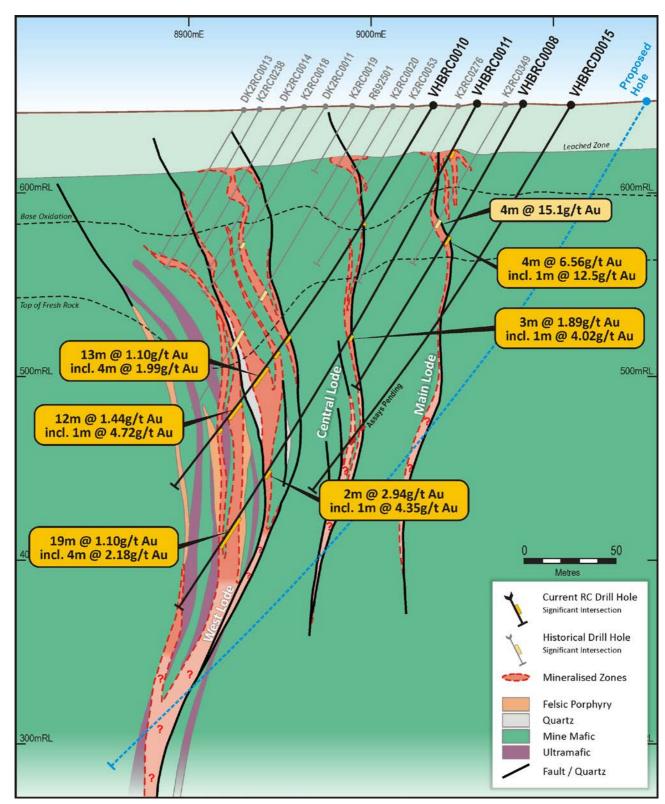


Figure 3: PHB-1 Prospect, cross section 16,925mN showing intersections on Main, Central & West Lode

About Vango Mining Limited

Vango Mining Limited (Vango or the Company) is an exploration and mining development company primarily focused on exploring and developing the Company's key asset, the Marymia Gold Project (Marymia), located in the Mid-West region of Western Australia (Figure 4).

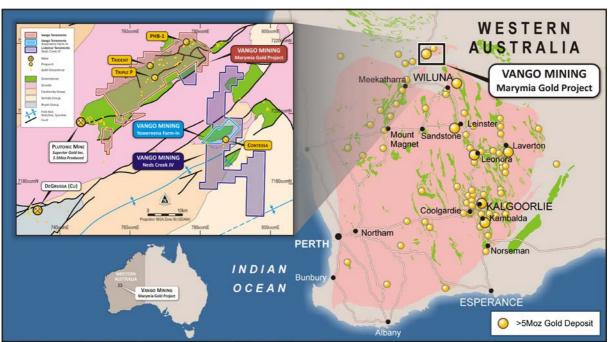


Figure 4: Location of Marymia Gold Project in the Yilgarn block of Western Australia

Competent Persons Statements

The information in this report that relates to exploration results has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale, a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM") and a full time employee of Discover Resource Services Pty Ltd. Mr Dugdale has sufficient experience, including over 34 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

Certain statements contained in this announcement, including information as to the future financial or operating performance of the Company and its projects, may be forward-looking statements that:

- may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

- ENDS -

Previous ASX releases referenced in this ASX release:

- ¹VAN ASX 03/03/20 Exceptional Intersections from New lode Discovery at Marymia (PHB-1)
- ²VAN ASX 28/07/2020 Drilling Underway Testing High-Grade Targets at Marymia
- ³VAN ASX 23/03/2020 High-Grade Drilling Success at Marymia Gold Project (PHB-1)
- ⁴VAN ASX 14/08/2020 Diamond Drilling to Test Key High Grade Targets at Ned's Creek

Authorisation

This market announcement has been authorised for release by the Board of Vango Mining Limited.

For further information, please contact Vango Mining Ltd:

Bruce McInnes, Chairman James Moses, Media and Investor Inquiries E: info@vangomining.com E: james@mandatecorporate.com.au

T: +61 2 8114 4553 T: +61 420 991 574

Or visit www.vangomining.com

Table 1: PHB-1 Initial significant Intersections:

	Hole ID	Depth m	Section	From	То	m	g/t Au	Cut-off	Lode/Structure	
	VHBRCD0007 (PC)	392	16,875N	88	91	3.0	4.57	0.5 g/t		
	incl.			89	91	2.0	6.56	3.0 g/t	Main Lode	
	incl.			90	91	1.0	9.50	5.0 g/t		
	VHBRC0008	180	16,925N	87	91	4.0	6.56	1.0 g/t		
	incl.			88	91	3.0	8.07	3.0 g/t	Main Lode	
	incl.			88	89	1.0	12.46	5.0 g/t		
	VHBRCD0009 (PC)	270.9	17,105N	43	47	4.0	1.23	0.5 g/t	Main Lode?	
	VHBRC0010	251	16,925N	150	155	5.0	1.31	1.0 g/t		
	/			160	164	4.0	1.33	0.5 g/t	West Lode HW	
	incl.			162	163	1.0	3.36	3.0 g/t		
115	\			171	176	5.0	1.72	0.5 g/t		
	incl.			171	175	4.0	1.99	1.0 g/t	West Lode	
	\			179	184	5.0	1.13	0.5 g/t	Central	
/ 1	Incl. int. waste			171	184	13.0	1.10	N/A		
				193	205	12.0	1.44	0.5 g/t		
) incl.			197	202	5.0	1.94	1.0 g/t	Most Lodo EM	
	incl.			199	200	1.0	4.72	3.0 g/t	West Lode FW	
				210	214	4.0	1.42	0.5 g/t		
	Incl. int. waste			193	214	21.0	1.10	N/A	West Lode FW	
$ \bigcup$	VHBRC0011	319	16,925N	30	35	5.0	0.83	0.5 g/t	Main Lada	
	Incl.			33	35	2.0	2.07	1.0 g/t	Main Lode	
				146	149	3.0	1.89	0.5 g/t		
	incl.			146	148	2.0	2.58	1.0 g/t	Central Lode	
	incl.			147	148	1.0	4.02	3.0 g/t		
	<i>'</i>			230	232	2.0	2.94	1.0 g/t		
\bigcap				230	231	1.0	4.35	3.0 g/t	1,,,	
12)			262	281	19.0	1.10	0.5 g/t	West Lode	
	incl.			277	281	4.0	2.18	1.0 g/t		
75	VHBRC0012	205	16,975N	66	67	1.0	3.47	3.0 g/t	Main Lode?	
)			129	136	7.0	1.73	0.5 g/t		
\leq	incl.			131	136	5.0	2.15	1.0 g/t	West Lode HW	
	incl.			131	132	1.0	5.20	3.0 g/t		
	-			144	146	2.0	2.10	1.0 g/t		
•				153	155	2.0	3.04	0.5 g/t	West Lode FW	
	incl.			153	154	1.0	5.09	3.0 g/t		
	Incl. int. waste			129	155	26.0	1.06	N/A	West Lode	
)			176	181	5.0	1.14	0.5 g/t	Far West Lode	
	VHBRC0013	235	16,975N	175	188	13.0	1.23	0.5 g/t		
	incl.		, -	175	179	4.0	2.09	1.0 g/t	West Lode HW	
				218	222	4.0	1.46	1.0 g/t	West Lode FW	
İ	VHBRC0014	283	16,975mN	68	80	12	1.65	0.5 g/t		
}	incl.		,	68	79	11	1.75	1.0 g/t		
	incl.			68	69	1	8.57	3.0 g/t	Main Lode	
l.				50		-		5.5 P/ c	i	

Table 2: PHB-1 Drillhole locations and details:

Tuble 2. I	HB-1 Drilinoi	e iocat	ions unu u	etuiis.	ı		1		ı	ı
Prospect	Hole ID	Drill Type	MGA East	MGA North	MGA RL	Grid East	Grid North	Depth (m)	Collar Dip°	Collar Azi°
PHB1	VHBRCD0006	RCD	775733	7219777	652.1	9125	16830	380.0	-60	323
PHB1	VHBRCD0007	RCD	775754	7219824	650	9100	16875	392.0	-60	323
PHB1	VHBRC0008	RC	775788	7219870	651	9085	16930	180	-60	323
PHB1	VHBRCD0009	RCD	775876	7220042	647.9	9000	17105	270.9	-60	323
PHB1	VHBRC0010	RC	775759	7219910	649.2	9035	16930	251	-60	323
PHB1	VHBRC0011	RC	775773	7219890	650.5	9060	16930	319	-60	323
PHB1	VHBRC0012	RC	775781	7219945	648.9	9020	16970	205	-60	323
PHB1	VHBRC0013	RC	775797	7219934	649.6	9040	16975	235	-60	323
PHB1	VHBRC0014	RC	775816	7219909	650.7	9070	16975	283	-60	323
PHB1	VHBRCD0015	RCD	775800	7219847	651.6	9110	16925	253.1	-60	323
PHB1	VHBRC0016	RC	775924	7219980	649.1	9080	17105	240	-60	323
PHB1	VHBRC0017	RC	775839	7219877	651	9110	16975	222	-60	323
PHB1	VHBRC0018	RC	775714	7219794	649.4	9100	16825	138	-60	323
PHB1	VHBRC0019	RC	775699	7219822	649	9070	16830	293	-62	323
PHB1	VHBRC0020	RC	775737	7219837	649.3	9080	16870	187	-60	323
PHB1	VHBRC0021	RC	775728	7219855	649.2	9060	16875	283	-60	323
PHB1	VHBRC0022	RC	775713	7219868	648.5	9040	16870	258	-60	323
PHB1	VHBRCD0023	RCD	775762	7219805	650	9120	16870	348.1 in progress	-62	323
							Total	4738.1		

Appendix 1: Significant assays from drillholes released in this announcement

Hole ID	Sample No	From Depth	To Depth	Data Type	Au	Au1	Au2
VHBRC0008	5169195	86	87	REVC	0.338		
VHBRC0008	5169196	87	88	REVC	2.053		
VHBRC0008	5169197	88	89	REVC	12.237	12.684	
VHBRC0008	5169198	89	90	REVC	3.041		
VHBRC0008	5169199	90	91	REVC	8.313	9.086	
VHBRC0008	5169201	90	91	DUP	5.354	4.821	
VHBRC0008	5169203	91	92	REVC	0.307		
VHBRC0008	5169204	92	93	REVC	0.351		
VHBRCD0007	5167555	88	89	REVC	0.598		
VHBRCD0007	5167556	89	90	REVC	3.752	3.467	
VHBRCD0007	5167557	90	91	REVC	9.223	9.784	
VHBRCD0009	5167592	42	43	REVC	0.205		
VHBRCD0009	5167593	43	44	REVC	0.704		
VHBRCD0009	5167594	44	45	REVC	2.115		
VHBRCD0009	5167595	45	46	REVC	0.91		
VHBRCD0009	5167596	46	47	REVC	1.18		
VHBRCD0009	5167597	47	48	REVC	0.484		
VHBRCD0009	5167619	66	67	REVC	0.758		
VHBRCD0009	5167621	66	67	DUP	0.862		
VHBRCD0009	5167623	67	68	REVC	0.775		
VHBRC0010	5167737	75	76	REVC	0.276		
VHBRC0010	5167738	76	77	REVC	0.278		
VHBRC0010	5167739	77	78	REVC	0.922		
VHBRC0010	5167741	77	78	DUP	0.604		
VHBRC0010	5167743	78	79	REVC	0.135		
VHBRC0010	5167744	79	80	REVC	0.284		
VHBRC0010	5167755	90	91	REVC	0.767		
VHBRC0010	5167826	149	150	REVC	0.222		
VHBRC0010	5167827	150	151	REVC	1.489		
VHBRC0010	5167828	151	152	REVC	0.579		
VHBRC0010	5167829	152	153	REVC	1.067		
VHBRC0010	5167830	153	154	REVC	0.629		
VHBRC0010	5167831	154	155	REVC	2.794		
VHBRC0010	5167832	155	156	REVC	0.219		
VHBRC0010	5167833	156	157	REVC	0.256		
VHBRC0010	5167834	157	158	REVC	0.044		
VHBRC0010	5167835	158	159	REVC	0.02		
VHBRC0010	5167836	159	160	REVC	0.053		
VHBRC0010	5167837	160	161	REVC	0.554		
VHBRC0010	5167838	161	162	REVC	0.556		
VHBRC0010	5167839	162	163	REVC	2.773		
VHBRC0010	5167841	162	163	DUP	3.942		
VHBRC0010	5167843	163	164	REVC	0.869		

Hole ID	Sample No	From Depth	To Depth	Data Type	Au	Au1	Au2
VHBRC0010	5167844	164	165	REVC	0.241		
VHBRC0010	5167845	165	166	REVC	0.185		
VHBRC0010	5167846	166	167	REVC	0.89		
VHBRC0010	5167847	167	168	REVC	0.364		
VHBRC0010	5167848	168	169	REVC	0.377		
VHBRC0010	5167849	169	170	REVC	0.146		
VHBRC0010	5167850	170	171	REVC	0.446		
VHBRC0010	5167851	171	172	REVC	2.667		
VHBRC0010	5167852	172	173	REVC	0.592		
VHBRC0010	5167853	173	174	REVC	1.982		
VHBRC0010	5167854	174	175	REVC	2.721		
VHBRC0010	5167855	175	176	REVC	0.613		
VHBRC0010	5167856	176	177	REVC	0.04		
VHBRC0010	5167857	177	178	REVC	0.036		
VHBRC0010	5167858	178	179	REVC	0.063		
VHBRC0010	5167859	179	180	REVC	0.613		
VHBRC0010	5167861	179	180	DUP	0.8		
VHBRC0010	5167863	180	181	REVC	0.594		
VHBRC0010	5167864	181	182	REVC	0.275		
VHBRC0010	5167865	182	183	REVC	1.626		
VHBRC0010	5167866	183	184	REVC	2.436		
VHBRC0010	5167867	184	185	REVC	0.345		
VHBRC0010	5167868	185	186	REVC	0.314		
VHBRC0010	5167869	186	187	REVC	0.249		
VHBRC0010	5167870	187	188	REVC	0.365		
VHBRC0010	5167871	188	189	REVC	0.156		
VHBRC0010	5167872	189	190	REVC	0.048		
VHBRC0010	5167873	190	191	REVC	0.072		
VHBRC0010	5167874	191	192	REVC	0.018		
VHBRC0010	5167875	192	193	REVC	0.271	0.395	
VHBRC0010	5167876	193	194	REVC	0.766	0.265	0.502
VHBRC0010	5167877	194	195	REVC	2.089	1.904	
VHBRC0010	5167878	195	196	REVC	1.143	1.205	
VHBRC0010	5167879	196	197	REVC	0.159	0.846	1.013
VHBRC0010	5167881	196	197	DUP	0.285	1.445	1.157
VHBRC0010	5167883	197	198	REVC	1.162	1.718	1.176
VHBRC0010	5167884	198	199	REVC	0.993	0.877	
VHBRC0010	5167885	199	200	REVC	4.027	5.413	
VHBRC0010	5167886	200	201	REVC	1.047		
VHBRC0010	5167887	201	202	REVC	1.636		
VHBRC0010	5167888	202	203	REVC	0.364		
VHBRC0010	5167889	203	204	REVC	0.571		
VHBRC0010	5167890	204	205	REVC	1.325		
VHBRC0010	5167891	205	206	REVC	0.374		

Hole ID	Sample No	From Depth	To Depth	Data Type	Au	Au1	Au2
VHBRC0010	5167892	206	207	REVC	0.275		
VHBRC0010	5167893	207	208	REVC	0.418		
VHBRC0010	5167894	208	209	REVC	0.437		
VHBRC0010	5167895	209	210	REVC	0.39		
VHBRC0010	5167896	210	211	REVC	0.997		
VHBRC0010	5167897	211	212	REVC	1.017		
VHBRC0010	5167898	212	213	REVC	2.991		
VHBRC0010	5167899	213	214	REVC	0.605		
VHBRC0010	5167901	213	214	DUP	0.784		
VHBRC0011	5167984	30	31	REVC	1.04		
VHBRC0011	5167985	31	32	REVC	0.303		
VHBRC0011	5167986	32	33	REVC	0.51		
VHBRC0011	5167987	33	34	REVC	1.037		
VHBRC0011	5167988	34	35	REVC	1.253		
VHBRC0011	5168034	74	75	REVC	0.312		
VHBRC0011	5168035	75	76	REVC	0.518		
VHBRC0011	5168036	76	77	REVC	0.356		
VHBRC0011	5168037	77	78	REVC	0.921		
VHBRC0011	5168117	145	146	REVC	0.339		
VHBRC0011	5168118	146	147	REVC	1.132		
VHBRC0011	5168119	147	148	REVC	2.807		
VHBRC0011	5168121	147	148	DUP	5.238		
VHBRC0011	5168123	148	149	REVC	0.519		
VHBRC0011	5168212	225	226	REVC	0.505		
VHBRC0011	5168213	226	227	REVC	0.259		
VHBRC0011	5168214	227	228	REVC	0.246		
VHBRC0011	5168215	228	229	REVC	0.086		
VHBRC0011	5168216	229	230	REVC	0.168		
VHBRC0011	5168217	230	231	REVC	4.552	4.141	
VHBRC0011	5168218	231	232	REVC	1.53		
VHBRC0011	5168219	232	233	REVC	0.125		
VHBRC0011	5168221	232	233	DUP	0.132		
VHBRC0011	5168223	233	234	REVC	0.103		
VHBRC0011	5168224	234	235	REVC	0.216		
VHBRC0011	5168225	235	236	REVC	0.536		
VHBRC0011	5168251	258	259	REVC	0.42		
VHBRC0011	5168252	259	260	REVC	0.449		
VHBRC0011	5168253	260	261	REVC	0.108		
VHBRC0011	5168254	261	262	REVC	0.232		
VHBRC0011	5168255	262	263	REVC	0.952		
VHBRC0011	5168256	263	264	REVC	0.68		
VHBRC0011	5168257	264	265	REVC	1.238		
VHBRC0011	5168258	265	266	REVC	0.491		
VHBRC0011	5168259	266	267	REVC	1.006		

Hole ID	Sample No	From Depth	To Depth	Data Type	Au	Au1	Au2
VHBRC0011	5168261	266	267	DUP	0.84		
VHBRC0011	5168263	267	268	REVC	0.944		
VHBRC0011	5168264	268	269	REVC	0.714		
VHBRC0011	5168265	269	270	REVC	0.781		
VHBRC0011	5168266	270	271	REVC	0.59		
VHBRC0011	5168267	271	272	REVC	0.363		
VHBRC0011	5168268	272	273	REVC	2.277		
VHBRC0011	5168269	273	274	REVC	1.329		
VHBRC0011	5168270	274	275	REVC	0.263		
VHBRC0011	5168271	275	276	REVC	0.143		
VHBRC0011	5168272	276	277	REVC	0.458		
VHBRC0011	5168273	277	278	REVC	5.411	5.319	
VHBRC0011	5168274	278	279	REVC	1.002		
VHBRC0011	5168275	279	280	REVC	1.033		
VHBRC0011	5168276	280	281	REVC	1.307		
VHBRC0011	5168277	281	282	REVC	0.319		
VHBRC0011	5168278	282	283	REVC	0.324		
VHBRC0011	5168316	314	315	REVC	1.047		
VHBRC0012	5168399	66	67	REVC	3.452		
VHBRC0012	5168401	66	67	DUP	3.488		
VHBRC0012	5168403	67	68	REVC	0.384		
VHBRC0012	5168474	129	130	REVC	0.771		
VHBRC0012	5168475	130	131	REVC	0.57		
VHBRC0012	5168476	131	132	REVC	7.767	3.156	4.679
VHBRC0012	5168477	132	133	REVC	0.746		
VHBRC0012	5168478	133	134	REVC	0.631		
VHBRC0012	5168479	134	135	REVC	1.177		
VHBRC0012	5168481	134	135	DUP	1.523		
VHBRC0012	5168483	135	136	REVC	3.015		
VHBRC0012	5168484	136	137	REVC	0.265		
VHBRC0012	5168492	144	145	REVC	1.543		
VHBRC0012	5168493	145	146	REVC	2.648		
VHBRC0012	5168494	146	147	REVC	0.437		
VHBRC0012	5168495	147	148	REVC	0.49		
VHBRC0012	5168496	148	149	REVC	0.309		
VHBRC0012	5168504	153	154	REVC	5.247	4.413	5.608
VHBRC0012	5168505	154	155	REVC	0.994		
VHBRC0012	5168506	155	156	REVC	0.229		
VHBRC0012	5168507	156	157	REVC	0.639		
VHBRC0012	5168523	169	170	REVC	0.811		
VHBRC0012	5168524	170	171	REVC	0.878		
VHBRC0012	5168525	171	172	REVC	1.23		
VHBRC0012	5168526	172	173	REVC	0.102		
VHBRC0012	5168527	173	174	REVC	0.032		

Hole ID	Sample No	From Depth	To Depth	Data Type	Au	Au1	Au2
VHBRC0012	5168528	174	175	REVC	0.42		
VHBRC0012	5168529	175	176	REVC	0.431		
VHBRC0012	5168530	176	177	REVC	0.722		
VHBRC0012	5168531	177	178	REVC	2.401		
VHBRC0012	5168532	178	179	REVC	1.044		
VHBRC0012	5168533	179	180	REVC	0.988		
VHBRC0012	5168534	180	181	REVC	0.533		
VHBRC0012	5168535	181	182	REVC	0.398		
VHBRC0012	5168536	182	183	REVC	0.49		
VHBRC0012	5168537	183	184	REVC	0.194		
VHBRC0012	5168538	184	185	REVC	0.049		
VHBRC0012	5168539	185	186	REVC	0.186		
VHBRC0012	5168541	185	186	DUP	0.216		
VHBRC0012	5168543	186	187	REVC	0.756		
VHBRC0013	5168763	167	168	REVC	0.346		
VHBRC0013	5168764	168	169	REVC	0.219		
VHBRC0013	5168765	169	170	REVC	0.316		
VHBRC0013	5168766	170	171	REVC	0.569		
VHBRC0013	5168767	171	172	REVC	0.306		
VHBRC0013	5168768	172	173	REVC	0.292		
VHBRC0013	5168769	173	174	REVC	0.368		
VHBRC0013	5168770	174	175	REVC	0.148		
VHBRC0013	5168771	175	176	REVC	2.79		
VHBRC0013	5168772	176	177	REVC	0.386		
VHBRC0013	5168773	177	178	REVC	3.149	3.511	
VHBRC0013	5168774	178	179	REVC	1.838		
VHBRC0013	5168775	179	180	REVC	0.674		
VHBRC0013	5168776	180	181	REVC	0.14		
VHBRC0013	5168777	181	182	REVC	0.338		
VHBRC0013	5168778	182	183	REVC	0.788		
VHBRC0013	5168779	183	184	REVC	0.229		
VHBRC0013	5168781	183	184	DUP	0.314		
VHBRC0013	5168783	184	185	REVC	2.533		
VHBRC0013	5168784	185	186	REVC	1.067		
VHBRC0013	5168785	186	187	REVC	0.386		
VHBRC0013	5168786	187	188	REVC	1.507		
VHBRC0013	5168787	188	189	REVC	0.499		
VHBRC0013	5168788	189	190	REVC	0.204		
VHBRC0013	5168789	190	191	REVC	0.34		
VHBRC0013	5168816	214	215	REVC	0.218		
VHBRC0013	5168817	215	216	REVC	0.174		
VHBRC0013	5168818	216	217	REVC	0.259		
VHBRC0013	5168819	217	218	REVC	0.385		
VHBRC0013	5168821	217	218	DUP	0.627		

Hole ID	Sample	From	То	Data	Au	Au1	۸
noie iD	No	Depth	Depth	Туре	Au	Auı	Au2
VHBRC0013	5168823	218	219	REVC	1.131	1.245	
VHBRC0013	5168824	219	220	REVC	2.21	2.614	
VHBRC0013	5168825	220	221	REVC	0.842		
VHBRC0013	5168826	221	222	REVC	1.209	1.611	
VHBRC0013	5168827	222	223	REVC	0.237		
VHBRC0014	5168887	68	69	REVC	8.572		
VHBRC0014	5168888	69	70	REVC	0.573		
VHBRC0014	5168889	70	71	REVC	0.296		
VHBRC0014	5168890	71	72	REVC	0.143		
VHBRC0014	5168891	72	73	REVC	0.771		
VHBRC0014	5168892	73	74	REVC	3.994	3.676	
VHBRC0014	5168893	74	75	REVC	2.476	1.655	
VHBRC0014	5168894	75	76	REVC	0.078		
VHBRC0014	5168895	76	77	REVC	0.039		
VHBRC0014	5168896	77	78	REVC	0.246		
VHBRC0014	5168897	78	79	REVC	2.779	2.431	
VHBRC0014	5168898	79	80	REVC	0.569		

JORC Code, 2012 Edition: Table 1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any 	RC Drilling assays are from 1m samples split on the cyclone for the key intercepts. 4m composites from these 1m splits are taken in zones of lower prospectivity. Where the composite samples return > 0.5g/t Au, they are reassayed on 1m intervals
	 measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was 	 Reported Diamond Drilling assays are from half core, NQ diamond core. This is considered to be sufficient material for a representative sample
	pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Duplicates are taken of the second quarter of core every 20 samples to ensure the samples were representative.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer ratary gir blast guges, Bangka sonic stell and	Face Sampling, Reverse Circulation hammer
tetimiques	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	HQ/NQ Diamond
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	RC drilling was bagged on 1m intervals.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Recovery in diamond drilling based on measured core returned for each 3m
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Reverse Circulation holes are being logged on 1m intervals
	 appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. 	Diamond holes are logged in detail based on geological boundaries.
	Core (or costean, channel, etc) photography. • The total length and percentage of the relevant intersections logged.	Diamond holes are logged on 1m intervals for geotechnical data.
Sub-sampling techniques and sample preparation	 all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	NQ: Half Diamond Core, HQ: Quarter Diamond Core -Sampling on selected intervals of between 0.25-1.5m length.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Sampling using a diamond saw.
	 Quality control procedures adopted for all sub-sampling stages to maximise samples representivity Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half 	Duplicates taken every 20 samples by sampling a second quarter of the NQ core, or from a second split directly from cyclone.
	sampling.	Standards submitted every 20

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	samples of tenor similar to those expected in the sampling.
		Cone splitter on the cyclone was used to produce a 1m sub-sample on the RC rig.
)		Blanks were inserted every 20 samples also
		In un-prospective lithologies these 1m samples were composited using a scoop over 4m intervals.
Quality of assay data and laboratory	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Samples analysed at Intertek Laboratories in Perth, WA, using a 50g Fire Assay method.
tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Samples are dried, crushed and pulverised prior to analysis.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Intercepts have been calculated generally using a 1g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All repeats and duplicates have been included.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings	DGPS has been used to locate the drillholes.
	 and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	REFLEX Gyro Tool used for downhole surveys on all holes
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Sample data down hole is at no more than 1m intervals Sample data spacing down drillholes is 1m (or less if geological boundaries in DDH's) for potentially mineralised intervals or 4m composites in zones where mineralisation not expected. Drill intersection spacing varies from <25m from previous intersections to >100m from previous intersections. Assessment as to whether sufficient data has been generated to establish the degree of geological and grade continuity appropriate for Mineral Resource and estimation procedure(s) is underway and, if necessary, additional drilling will be carried out to establish continuity.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Intercepts given are downhole widths with the true widths not determined.
Sample security	The measures taken to ensure sample security.	Samples sealed in bulka bag with Security seal, unbroken when delivered to lab
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Review of standards, blanks and Duplicates indicate sampling and analysis has been effective

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park	Located in the Marymia - Plutonic Greenstone Belt ~218km northeast of Meekatharra in the Midwest mining district in WA
	 and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence 	M52/183 granted tenement in good standing.
	to operate in the area.	The tenements predate Native title interests, but are covered by the Gingirana Native Title claim
		The tenements are 100% owned by Vango Mining Limited and subsidiary Dampier Plutonic Pty Ltd.
		 Gold production will be subject to a 1-4% royalty dependent on gold price (Currently 2%) capped at \$2M across the entire project area.
		 Contingent production payments of up to \$4M across the entire project area.
		 M52/183 was the subject of a Terms Sheet Agreement that has since expired. The results announced in this release are from assaying that was completed post expiry.
Exploration done by other parties.	Acknowledgment and appraisal of exploration by other parties.	Extensive previous work by Resolute Mining, Homestake Gold and Dampier Gold
Geology	Deposit type, geological setting and style of mineralisation.	Gold mineralisation at K2/PHB-1 is orogenic, hosted within sheared and faulted mafic rocks with sedimentary and ultramafic lenses and intrusive felsic "porphyries". High grade lodes of mineralisation are associated with steep dipping structures associated with lithological boundaries and/or narrow quartz veining. (see cross section on Figure 3).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 Location of new drillholes based on surveyed sites, and DGPS, summarised in Table 2 and shown on Figure 2.

Criteria	JORC Code explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Location of previous Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. Northing and easting data generally within 0.1m accuracy RL data +-0.2m Down hole length =+- 0.1 m
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intercepts have been calculated generally using a 1 g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All Duplicates and repeats are included No upper cut off has been applied to intersections.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Orientation of mineralised zones are still to be ascertained by follow up drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 See Figure 1, regional geology, and project location; Figure 2; prospect geology and plan view of drillhole collar locations and Figure 3, appropriate crosssection of the PHB-1 deposit showing the different lodes and significant intersections. See Table 1, summary of drilling intersections and Table 2, drillhole locations and Appendix 1, all significant assays, with
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of	 repeats and duplicates. See Table 1, summary of drilling intersections and Table 2, drillhole locations and Appendix

Criteria	JORC Code explanation	Commentary
	both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	1, all significant assays, low and high grade, with repeats and duplicates.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Geological interpretations are included on both plan views (Figures 1 and 2) and cross sectional view (Figure 3). No new exploration data has been generated apart from the drilling information included in this report.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further drilling to be planned to test the continuity of the Main, Central and West lodes, both at depth and along the grid North-South strike and to define Mineral Resources.